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ABSTRACT

Measuring gene expression levels with microarrays
is one of the key technologies of modern genomics.
Clustering of microarray data is an important appli-
cation, as genes with similar expression profiles
may be regulated by common pathways and
involved in related functions. Gene Ontology (GO)
analysis and visualization allows researchers to
study the biological context of discovered clusters
and characterize genes with previously unknown
functions. We present VisHIiC (Visualization of
Hierarchical Clustering), a web server for clustering
and compact visualization of gene expression data
combined with automated function enrichment
analysis. The main output of the analysis is a den-
drogram and visual heatmap of the expression
matrix that highlights biologically relevant clusters
based on enriched GO terms, pathways and regula-
tory motifs. Clusters with most significant enrich-
ments are contracted in the final visualization,
while less relevant parts are hidden altogether.
Such a dense representation of microarray data
gives a quick global overview of thousands of tran-
scripts in many conditions and provides a good
starting point for further analysis. VisHiC is freely
available at http://biit.cs.ut.ee/vishic.

INTRODUCTION

Microarrays have become the standard way of producing
genome-scale measurements of gene expression levels (1).
Since the first experimental studies (2), microarrays have
been used for answering a large variety of questions, such
as characterizing gene expression patterns in tumour
cell lines and healthy tissues (3.,4), identifying key mecha-
nisms of stem cell differentiation (5), and reconstructing
global transcriptional networks in model organisms (6).

Databases like ArrayExpress and GEO (7,8) have
become goldmines of transcriptomic information with
thousands of publicly available microarray datasets.

Interpretation and visualization is a crucial step of
microarray analysis, as measurements are abundant and
the level of experimental noise is high (9). A common
reasoning behind microarray analysis is ‘guilt by associa-
tion’, as genes with similar expression profiles may have
common regulatory circuits and functions (10). Unsuper-
vised clustering presented as a heatmap and dendrogram
is a common approach for detecting coexpressed groups
of genes (11,12). Gene Ontology (GO) annotations are
often used for the biological interpretation of detected
clusters (13).

Clustering has several well-identified drawbacks that
affect interpretation and reproducibility (14). Popular
clustering methods rely on input parameters, for example,
hierarchical clustering (11) applies a fixed dendrogram
cut-off value, and K-means (12) require predefining the
number (and hence, the structure) of expected groups.
Enrichment tools that relate gene groups to GO categories
need to be accessed separately, which complicates the
analysis of hundreds of clusters. Analysing results of
hierarchical clustering is complicated, since each node of
the dendrogram represents a potential cluster. Moreover,
given the hundreds of potentially relevant datasets in
public databases, the manual work would be unreason-
able. Data visualization is also technically challenging,
since heatmaps with thousands of transcripts hardly fit
on computer screens. These problems are still commonly
tackled with ad hoc means, e.g. removing genes that are
‘not interesting’ due to constant expression levels.

VisHiC (Visualization of Hierarchical Clustering) is a
web server for analysis of gene expression data, that
provides agile all-in-one service for hierarchical clustering,
functional enrichment analysis and visualization. The tool
provides a global overview of a given expression matrix
and highlights its most significant functional aspects using
GO analysis. VisHiC builds a compact clustering using
functional enrichments rather than fixed user-defined
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thresholds, by pruning clusters where no enrichments are
found.

GO enrichment analysis is a common measure of gene
cluster interpretation and a wide range of related tools has
been created in recent years (15-17). Several microarray
analysis pipelines are available, notably Expression
Profiler (18), GeneXPress (19) and AMEN (20) incor-
porate clustering methods with downstream analysis of
annotations, sequence information and protein—protein
interactions. The ambiguity of clustering methods has
created a need for algorithms that assess multiple clusters
(21). Some previously published tools also use functional
information for clustering (22-25). More recently, Ovaska
et al. (26) combine clustering of genes based on semantic
similarity of GO with heatmap visualization. However,
the above comprise downloadable software that require
additional data and expensive local computations.
Our web server, on the other hand, provides the latest
information from public databases and uses speed-
optimized algorithms of HappieClust (27) and g:Profiler
(16) to provide fast clustering and functional profiling
even for larger datasets. In conclusion, we believe that
our server provides an enhanced and useful service to
the community.

THE VisHiC SERVER

VisHiC (http://biit.cs.ut.ee/vishic, Figure 1) is a web server
for integrated cluster analysis, interpretation and visuali-
zation of microarray data that:

(1) performs a fast approximate hierarchical clustering
of a user-provided gene expression dataset;

(2) computes functional enrichments of all discovered
clusters using GO, pathways and regulatory motifs;

(3) creates a compact heatmap dendrogram of the
expression dataset, revealing most important func-
tional enrichments and hiding poorly annotated
expression profiles.

The input of VisHiC is a gene expression matrix in plain
tab-delimited or Gene Expression Omnibus SOFT format.
Alternatively, one may use an expression matrix from
our selection of example datasets. VisHiC supports a
wide variety of gene, protein and probeset identifiers
for human as well as most eukaryotic model organisms.
The output of VisHiC is a compact gene expression matrix
represented as a heatmap dendrogram, similar to the
format used in many gene expression analysis applica-
tions. The analysis consists of three consecutive steps as
described below.

Novel approximate algorithm allows rapid hierarchical
clustering of gene expression data

The first stage of VisHiC analysis involves clustering of
the input gene expression matrix.

Agglomerative hierarchical clustering (AHC) organizes
the data into a dendrogram, i.c. a tree where every node
represents a gene cluster (28). Nodes in the bottom of the
hierarchy (i.e. leaf nodes) represent single-gene clusters,

all nodes except leaves are made up of two smaller clus-
ters, and the root node contains all genes in the dataset.
The AHC algorithm starts from single-gene clusters, itera-
tively merges most similar neighbours and results in a
hierarchical structure of N —1 non-trivial clusters given
a dataset of N genes.

Computational speed is an important consideration
of AHC, as the standard algorithm requires all pairwise
distances between expression profiles. This renders to
around 200 million distances in case of an average
mammalian genome. The VisHiC server incorporates
HappieClust, our novel approximate version of the
AHC algorithm (27). Instead of computing all pairwise
distances, HappieClust takes advantage of pivot-based
similarity heuristics to calculate all distances between
similarly expressed genes as well as a random subset of
more distant pairs. Since only a subset of all pairwise
distances is calculated, HappieClust approximates the
full AHC based on the pairwise distances that have been
calculated during the process. Computational experiments
with public microarray data show that HappieClust pro-
duces a biologically comparable analysis an order of mag-
nitude faster than standard AHC.

Pearson correlation is the default measure in VisHiC
for determining similarity between expression profiles.
Alternatively, one may apply the negative correlation
measure that detects inverse correlation patterns such
as those shared by a repressor and its targets. Absolute
correlation is a combination of the two, as it detects both
direct and inverse similarity.

Functional enrichment analysis reveals optimal
gene clusters of biological relevance

The second stage of VisHiC analysis involves functional
enrichment analysis of all detected clusters to infer the
optimal clustering.

A common strategy for partitioning a hierarchical
clustering involves a dendrogram cut-off. However, it is
difficult to provide a biologically plausible cut-off value,
as gene expression profiles are not uniformly distributed
and a fixed cut-off for different datasets does not guaran-
tee stability.

In this work, we take a different approach and infer
clusters using statistical analysis of functional annotations
[refer to (29) for a relevant review]. We use our g:Profiler
software (16) to profile all discovered clusters for GO
terms (13), pathways of Reactome and KEGG (30,31),
regulatory motifs of Transfac (32) and microRNA target
sites of miRBase (33).

VisHiC applies the cumulative hypergeometric test to
detect the significance of a functional annotation «,
given that there are k genes in a cluster of n genes with
an annotation o, and there are K annotated genes among
the total of N genes in the genome:

min (n,K) (K) (N—K)

_ k) \n—k .
S M

To evaluate the total enrichment in a given cluster,
VisHiC computes a size-weighted annotation score ¢
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Figure 1. A biological case study with VisHiC. (a) Gene expression matrix and annotated dendrogram with significant clusters; (b) mitochondrion
cluster (ID:31732), (¢) muscle cluster (ID:36899), (d) annotation box of the mitochondrion cluster, appears when moving the mouse over the
dendrogram, (e) detailed view of the mitochondrion cluster with heatmap, dendrogram and lineplot (f) table with functional enrichments, including
clusters 31732 and 36 899. The data presented in the figure comprises microarray measurements of the heart tissue of cardiovascular patients with left
ventricular assist device. VisHIC reveals clusters with expected relevant annotations, e.g. mitochondrion, muscle tissue and ribosome (see Results

section).
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that summarizes enrichments of GO as well as pathways
and regulatory motifs:

g= "3 —log, ().

o

Alternatively, one may opt for a strategy that assigns the
best log P-value to each cluster, giving more preference to
clusters with specific annotations:

m = max —log, (py).

In order to reduce the amount of false positives result-
ing from numerous enrichment tests, VisHiC computes
a special multiple testing correction that accounts for
the hierarchical structure of GO (34). Standard correc-
tions such as Bonferroni and Benjamini—-Hochberg False
Discovery Rate are also applicable.

Enrichment-driven pruning of clustering dendrogram
creates a compact view of expression data

The final stage of VisHiC analysis creates a compact and
biologically motivated clustering of the expression dataset
to reveal its functional essence.

Hierarchical clustering places gene groups in a parent—
child structure, where clusters up in the hierarchy nat-
urally contain smaller clusters as subsets. Similarly, the
GO comprises a structured vocabulary where smaller
groups of specific annotations are contained in large gen-
eral groups. Hence, one expects to see specific enrichments
in child clusters and corresponding general annotations
in parent clusters. As the clustering dendrogram con-
tains a spectrum of hierarchically contained clusters
from single genes to the whole genome, choosing an opti-
mal cluster involves maximizing certain criteria within a
branch.

We have devised the following two-stage greedy algo-
rithm that determines the cluster structure based on func-
tional annotations.

e First, we look for dense clusters, i.e. clusters with a
high annotation score ¢, or alternatively, the term
with the strongest P-value m. We scan all groups of
genes that have functional enrichments, greedily start-
ing from the one that provides the strongest annota-
tion score. A cluster is not considered if any of its
child or parent clusters is already a dense cluster.
Dense clusters are shown in the final output.

e Second, we detect sparse clusters, i.e. groups of genes
that have poor or no functional enrichments. We start
the analysis from the root of the dendrogram and pass
it recursively, compressing all clusters except the ones
that contain dense clusters as child nodes. Sparse clus-
ters are cut-off from the dendrogram and correspond-
ing expression profiles are hidden in the heatmap.

Our annotation-driven clustering algorithm is fully
automated and does not depend on user-defined cut-offs.
Cluster boundaries are determined only from significant
enrichments of functional terms. VisHiC excludes small
(<5 genes) and large (>1000 genes) clusters from

enrichment analysis for optimal running time. The user
may choose a different range of cluster sizes, or disable
all compression to view the full expression matrix with all
related enrichments. All functional terms that remain
significant after multiple testing correction are used for
computing the optimal clustering. However, one may
apply a more stringent P-value threshold to reduce the
number of contributing enrichments and compress the
matrix to a greater extent.

The resulting expression matrix is presented as a heat-
map of gene activation and repression patterns, complete
with a dendrogram that highlights functional groups
of coexpressed genes. Colour-coded rectangles in the den-
drogram denote dense clusters and related functional
categories (GO, KEGG, Reactome, regulatory motifs,
microRNA target sites). Cluster-specific functional anno-
tations are additionally presented in a table and also
appear when hovering over the dendrogram. The main
window displays the compact heatmap with all highlighted
clusters, while one may also ‘zoom in’ to view any cluster
separately. In compact view, vertical branch stumps of
the dendrogram mark places where sparse clusters are
compressed. The user may search for genes of interest,
or conduct further analysis via hyperlinks to external
resources, e¢.g. browse-related functional categories via
the GO web site or g:Profiler.

Results: expression profiles of heart tissue of
cardiovascular patients contain clusters related
to muscle, mitochondria and extracellular matrix

We present a case study to demonstrate the use of VisHiC
in biological analyses (Figure 1). The example comprises
a microarray dataset of myocardial remodelling, includ-
ing 38 samples from 3 clinical groups of patients with
ischemic, non-ischemic and myocardial infarction, taken
before and after left ventricular assist device implantation
[available in GEO as part of the series GSE974 (35)].
We clustered the dataset, detected optimal clusters with
best enrichments and visualized the resulting expression
matrix (Figure 1a). We used a custom stringent P-value
threshold (P <1077) and ‘best annotation’ cluster selec-
tion strategy with Pearson correlation measure to com-
press the matrix into a reasonable publication-sized
format.

The best scoring clusters are related to mitochondrion
(Figure 1b), muscle tissue (Figure Ic) and extracellular
matrix, all of which are expected to be present in heart
tissue expression profiles. Mitochondria produce adeno-
sine triphosphate (ATP) and are the primary cellular
energy generators. A recent publication underlines the
importance of mitochondria in the heart and relates its
mutations to heart disorders (36).

The cluster with muscle tissue enrichments (ID:36899,
see Figure le for expression profiles and Figure If
for functional annotations) contains 420 probesets for
251 genes and has several strong enrichments (contractile
fibre: P <1072, muscle system process: P < 10722, cyto-
skeletal protein binding: P <107'%). In addition, our
analysis reveals an enrichment for the binding site of
serum response factor (SRF) (Transfac MO01007,



P<107"). SRF is a known heart transcription factor
which increased expression in congestive heart failure (37).

The case study shows that VisHiC successfully extracts
relevant functional aspects of a dataset, and compresses it
into an easily perceivable compact format that fits well on
screen and paper.

DISCUSSION AND CONCLUSION

VisHiC (http://biit.cs.ut.ee/vishic/) is a public web server
for clustering and interpreting gene expression data. The
tool is designed to extract the most significant biological
features of a microarray dataset in a single run. The main
output is a compact global view of the expression matrix
with only the most significant clusters shown and less
pronounced patterns hidden away, as its interactive
format leaves open ends for more detailed analyses.
VisHiC provides stability to otherwise ambiguous cluster-
ing and performs the labour-intensive task of evaluating
hundreds of redundant clusters in a rapid automated
manner. The approximate hierarchical clustering and
rapid functional analysis guarantee meaningful results
even if the datasets are large.

Functional assessment of microarray datasets is an
immediate application of VisHiC analysis, as annotations
of highlighted clusters should relate to proposed hypo-
theses. Our approach is likely to be useful for large
expression data warchouses, so that first broad overviews
could be offered to users who are routinely browsing
hundreds of datasets. One may use VisHiC to compare
different datasets in the context of experimental con-
ditions, global expression patterns and functional aspects.
Integrating expression clusters with other types of exper-
imental data like protein-DNA and protein—protein inter-
actions may provide researchers with additional clues
about gene regulation.
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